Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We measure the projected two-point correlation functions of emission-line galaxies (ELGs) from the Dark Energy Spectroscopic Instrument One-Percent Survey and model their dependence on stellar mass and [OII] luminosity. We select ∼180,000 ELGs with redshifts of 0.8 < z < 1.6, and define 27 samples according to cuts in redshift and both galaxy properties. Following a framework that describes the conditional [OII] luminosity–stellar mass distribution as a function of halo mass, we simultaneously model the clustering measurements of all samples at fixed redshift. Based on the modeling result, most ELGs in our samples are classified as central galaxies, residing in halos of a narrow mass range with a typical median of ∼1012.2−12.4h−1M⊙. We observe a weak dependence of clustering amplitude on stellar mass, which is reflected in the model constraints and is likely a consequence of the 0.5 dex measurement uncertainty in the stellar mass estimates. The model shows a trend between galaxy bias and [OII] luminosity at high redshift (1.2 < z < 1.6) that is otherwise absent at lower redshifts.more » « lessFree, publicly-accessible full text available October 9, 2026
-
Abstract In anticipation of forthcoming data releases of current and future spectroscopic surveys, we present the validation tests and analysis of systematic effects withinvelocileptorsmodeling pipeline when fitting mock data from theAbacusSummitN-body simulations. We compare the constraints obtained from parameter compression methods to the direct fitting (Full-Modeling) approaches of modeling the galaxy power spectra, and show that the ShapeFit extension to the traditional template method is consistent with the Full-Modeling method within the standard ΛCDM parameter space. We show the dependence on scale cuts when fitting the different redshift bins using the ShapeFit and Full-Modeling methods. We test the ability to jointly fit data from multiple redshift bins as well as joint analysis of the pre-reconstruction power spectrum with the post-reconstruction BAO correlation function signal. We further demonstrate the behavior of the model when opening up the parameter space beyond ΛCDM and also when combining likelihoods with external datasets, namely the Planck CMB priors. Finally, we describe different parametrization options for the galaxy bias, counterterm, and stochastic parameters, and employ the halo model in order to physically motivate suitable priors that are necessary to ensure the stability of the perturbation theory.more » « less
-
ABSTRACT This paper provides a comprehensive overview of how fitting of baryon acoustic oscillations (BAO) is carried out within the upcoming Dark Energy Spectroscopic Instrument’s (DESI) 2024 results using its DR1 data set, and the associated systematic error budget from theory and modelling of the BAO. We derive new results showing how non-linearities in the clustering of galaxies can cause potential biases in measurements of the isotropic ($$\alpha _{\mathrm{iso}}$$) and anisotropic ($$\alpha _{\mathrm{ap}}$$) BAO distance scales, and how these can be effectively removed with an appropriate choice of reconstruction algorithm. We then demonstrate how theory leads to a clear choice for how to model the BAO and develop, implement, and validate a new model for the remaining smooth-broad-band (i.e. without BAO) component of the galaxy clustering. Finally, we explore the impact of all remaining modelling choices on the BAO constraints from DESI using a suite of high-precision simulations, arriving at a set of best practices for DESI BAO fits, and an associated theory and modelling systematic error. Overall, our results demonstrate the remarkable robustness of the BAO to all our modelling choices and motivate a combined theory and modelling systematic error contribution to the post-reconstruction DESI BAO measurements of no more than 0.1 per cent (0.2 per cent) for its isotropic (anisotropic) distance measurements. We expect the theory and best practices laid out to here to be applicable to other BAO experiments in the era of DESI and beyond.more » « less
-
ABSTRACT Extracting precise cosmology from weak lensing surveys requires modelling the non-linear matter power spectrum, which is suppressed at small scales due to baryonic feedback processes. However, hydrodynamical galaxy formation simulations make widely varying predictions for the amplitude and extent of this effect. We use measurements of Dark Energy Survey Year 3 weak lensing (WL) and Atacama Cosmology Telescope DR5 kinematic Sunyaev–Zel’dovich (kSZ) to jointly constrain cosmological and astrophysical baryonic feedback parameters using a flexible analytical model, ‘baryonification’. First, using WL only, we compare the $$S_8$$ constraints using baryonification to a simulation-calibrated halo model, a simulation-based emulator model, and the approach of discarding WL measurements on small angular scales. We find that model flexibility can shift the value of $$S_8$$ and degrade the uncertainty. The kSZ provides additional constraints on the astrophysical parameters, with the joint WL + kSZ analysis constraining $$S_8=0.823^{+0.019}_{-0.020}$$. We measure the suppression of the non-linear matter power spectrum using WL + kSZ and constrain a mean feedback scenario that is more extreme than the predictions from most hydrodynamical simulations. We constrain the baryon fractions and the gas mass fractions and find them to be generally lower than inferred from X-ray observations and simulation predictions. We conclude that the WL + kSZ measurements provide a new and complementary benchmark for building a coherent picture of the impact of gas around galaxies across observations.more » « less
-
Abstract We present cosmological results from the measurement of baryon acoustic oscillations (BAO) in galaxy, quasar and Lyman-αforest tracers from the first year of observations from the Dark Energy Spectroscopic Instrument (DESI), to be released in the DESI Data Release 1. DESI BAO provide robust measurements of the transverse comoving distance and Hubble rate, or their combination, relative to the sound horizon, in seven redshift bins from over 6 million extragalactic objects in the redshift range 0.1 <z< 4.2. To mitigate confirmation bias, a blind analysis was implemented to measure the BAO scales. DESI BAO data alone are consistent with the standard flat ΛCDM cosmological model with a matter density Ωm=0.295±0.015. Paired with a baryon density prior from Big Bang Nucleosynthesis and the robustly measured acoustic angular scale from the cosmic microwave background (CMB), DESI requiresH0=(68.52±0.62) km s-1Mpc-1. In conjunction with CMB anisotropies fromPlanckand CMB lensing data fromPlanckand ACT, we find Ωm=0.307± 0.005 andH0=(67.97±0.38) km s-1Mpc-1. Extending the baseline model with a constant dark energy equation of state parameterw, DESI BAO alone requirew=-0.99+0.15-0.13. In models with a time-varying dark energy equation of state parametrised byw0andwa, combinations of DESI with CMB or with type Ia supernovae (SN Ia) individually preferw0> -1 andwa< 0. This preference is 2.6σfor the DESI+CMB combination, and persists or grows when SN Ia are added in, giving results discrepant with the ΛCDM model at the 2.5σ, 3.5σor 3.9σlevels for the addition of the Pantheon+, Union3, or DES-SN5YR supernova datasets respectively. For the flat ΛCDM model with the sum of neutrino mass ∑mνfree, combining the DESI and CMB data yields an upper limit ∑mν< 0.072 (0.113) eV at 95% confidence for a ∑mν> 0 (∑mν> 0.059) eV prior. These neutrino-mass constraints are substantially relaxed if the background dynamics are allowed to deviate from flat ΛCDM.more » « lessFree, publicly-accessible full text available February 1, 2026
-
We present a measurement of the cross-correlation between theMagLimgalaxies selected from the Dark Energy Survey (DES) first three years of observations (Y3) and cosmic microwave background (CMB) lensing from the Atacama Cosmology Telescope (ACT) Data Release 4 (DR4), reconstructed over ∼ 436 sq. deg of the sky. Our galaxy sample, which covers ∼ 4143 sq. deg, is divided into six redshift bins spanning the redshift range of 0.20 < z < 1.05. We adopt a blinding procedure until passing all consistency and systematics tests. After imposing scale cuts for the cross-power spectrum measurement, we reject the null hypothesis of no correlation at 9.1σ. We constrain cosmological parameters from a joint analysis of galaxy and CMB lensing-galaxy power spectra considering a flat ΛCDM model, marginalized over 23 astrophysical and systematic nuisance parameters. We find the clustering amplitude S_8 ≡ σ_8(Ω_m/0.3)^0.5 = 0.75+0.04-0.05. In addition, we constrain the linear growth of cosmic structure as a function of redshift. Our results are consistent with recent DES Y3 analyses and suggest a preference for a lower S_8 compared to results from measurements of CMB anisotropies by the Planck satellite, although at a mild level (< 2σ) of statistical significance.more » « less
-
ABSTRACT Cross-correlation between weak lensing of the Cosmic Microwave Background (CMB) and weak lensing of galaxies offers a way to place robust constraints on cosmological and astrophysical parameters with reduced sensitivity to certain systematic effects affecting individual surveys. We measure the angular cross-power spectrum between the Atacama Cosmology Telescope (ACT) DR4 CMB lensing and the galaxy weak lensing measured by the Dark Energy Survey (DES) Y3 data. Our baseline analysis uses the CMB convergence map derived from ACT-DR4 and Planck data, where most of the contamination due to the thermal Sunyaev Zel’dovich effect is removed, thus avoiding important systematics in the cross-correlation. In our modelling, we consider the nuisance parameters of the photometric uncertainty, multiplicative shear bias and intrinsic alignment of galaxies. The resulting cross-power spectrum has a signal-to-noise ratio = 7.1 and passes a set of null tests. We use it to infer the amplitude of the fluctuations in the matter distribution (S8 ≡ σ8(Ωm/0.3)0.5 = 0.782 ± 0.059) with informative but well-motivated priors on the nuisance parameters. We also investigate the validity of these priors by significantly relaxing them and checking the consistency of the resulting posteriors, finding them consistent, albeit only with relatively weak constraints. This cross-correlation measurement will improve significantly with the new ACT-DR6 lensing map and form a key component of the joint 6×2pt analysis between DES and ACT.more » « less
An official website of the United States government

Full Text Available